metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[aquatris(µ4-benzene-1,2dicarboxylato)dilanthanum(III)] hemihydrate]

Shie Fu Lush^a and Fwu Ming Shen^b*

^aDepartment of General Education Center, Yuanpei University, HsinChu, 30015 Taiwan, and ^bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St, HsinChu, 30015 Taiwan

Correspondence e-mail: fmshen@mail.ypu.edu.tw

Received 29 August 2011; accepted 6 September 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.012 Å; disorder in solvent or counterion; R factor = 0.037; wR factor = 0.087; data-to-parameter ratio = 11.6.

The asymmetric unit of the title coordination polymer, $\{[La_2(C_8H_4O_4)_3(H_2O)]\cdot 0.5H_2O\}_n$, contains two independent La^{III} atoms, one of which is surrounded by eight carboxylate-O atoms from six benzene-1,2-dicarboxylate (BDC) anions in a bicapped trigonal-prismatic geometry. The other La^{III} atom is nine-coordinated in a tricapped trigonal-prismatic geometry, formed by eight carboxylate-O atoms from six BDC anions and a coordinated water molecule. The BDC anions bridge the La^{III} atoms, forming a two-dimensional polymeric complex parallel to (001). The crystal structure contains weak $O-H\cdots O$ and non-classical $C-H\cdots O$ hydrogen bonds. A $C-H\cdots \pi$ interaction is also present in the crystal structure. The uncoordinated water molecule shows half-occupation.

Related literature

For a related structure, see: Wang et al. (2009).

Experimental

Crystal data

 $[La_{2}(C_{8}H_{4}O_{4})_{3}(H_{2}O)] \cdot 0.5H_{2}O$ $M_{r} = 1594.36$ Triclinic, $P\overline{1}$ a = 8.6269 (19) Å b = 10.5832 (17) Å c = 14.323 (2) Å $\alpha = 97.271 (18)^{\circ}$ $\beta = 102.199 (6)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) $T_{\rm min} = 0.287, T_{\rm max} = 0.871$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.087$ S = 1.114145 reflections 356 parameters $\gamma = 104.489 \ (8)^{\circ}$ $V = 1215.1 \ (4) \ Å^3$ Z = 1Mo K\alpha radiation $\mu = 3.54 \ \text{mm}^{-1}$ $T = 150 \ \text{K}$ $0.47 \times 0.24 \times 0.04 \ \text{mm}$

8765 measured reflections 4145 independent reflections 3430 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

12 restraints H-atom parameters constrained $\Delta \rho_{max} = 1.25$ e Å⁻³ $\Delta \rho_{min} = -0.91$ e Å⁻³

Table 1 Selected bond lengths (Å).

La1-O1	2.599 (4)	La2-O1	2.535 (4)
La1-O2	2.645 (5)	La2-O4 ^{iv}	2.482 (4)
La1-O3	2.695 (6)	La2-O5 ^{iv}	2.625 (4)
La1—O4	2.613 (4)	La2-O6 ⁱⁱⁱ	2.466 (4)
La1—O5 ⁱ	2.617 (4)	La2-O8 ^v	2.549 (5)
La1–O7 ⁱⁱ	2.439 (5)	La2-O17	2.608 (4)
La1—O17 ⁱⁱⁱ	2.543 (4)	La2-O18 ⁱⁱⁱ	2.495 (4)
La1-O20	2.478 (5)	La2-O19	2.417 (5)
La1-O22	2.611 (4)		

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x - 1, y, z; (v) -x - 1, -y, -z + 1.

Table 2

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C2–C7 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O22-H22A\cdots O1^{ii}$	0.90	2.20	3.001 (6)	148
$O22 - H22B \cdot \cdot \cdot O20^{ii}$	0.88	2.15	3.009 (8)	164
$O27 - H27A \cdot \cdot \cdot O2^{vi}$	0.91	2.38	3.17 (2)	146
$O27 - H27B \cdot \cdot \cdot O3^{i}$	0.88	1.86	2.69 (2)	158
C3-H3···O27 ^{vii}	0.93	2.15	2.96 (2)	145
$C16-H16\cdots O2^{i}$	0.93	2.58	3.331 (10)	138
$C19-H19\cdots Cg^{v}$	0.93	2.98	3.902 (9)	169
Symmetry codes: (i -x - 1, -v, -z + 1; (vi)	(x + 1, y + 1, z)	-y+1, -z+1 ; (vii) $x-1, y$; (ii) $-x, -y$ - 1, z.	, -z + 1; (v)

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*. This work was supported financially by Yuanpei University, Taiwan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5316).

References

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, G.-M., Xue, S.-Y., Li, H. & Liu, H.-L. (2009). Acta Cryst. C65, m469– m471.

Acta Cryst. (2011). E67, m1370-m1371 [doi:10.1107/S1600536811036282]

Poly[[aquatris(#4-benzene-1,2-dicarboxylato)dilanthanum(III)] hemihydrate]

S. F. Lush and F. M. Shen

Comment

Benzene-1,2-dicarboxylic acid (H₂BDC) are widely used in the construction of coordination polymers due to their capability of acting as bridging ligands in various coordination modes. But to the best of our knowledge, H₂BDC is seldom involved in lanthanide complexes (Wang *et al.*, 2009). In this paper, we describe the hydrothermal synthesis and structure properties of a lanthanide phthalate coordination complex { $[La_2(C_8H_4O_4)_3(H_2O)].0.5 H_2O$ }_n.

The molecular structure of the title compound is shown in Fig. 1. There are two independent lanthanum ions in the asymmetric unit. The La(1) ion is nine-coordinated with O₉ donors sets to form tricapped trigonal prismatic geometries by eight carboxylate O atoms and one water molecule, where La(2) ion is eight-coordinated with O₈ donors sets to form distorted bicapped trigonal-prismatic geometries by eight carboxylate O atoms, from six benzene-1,2-dicarboxylate anions. The selected bond lengths (Å) of title compound are listed in Table 1. The two La^{III} cations are separated by a non-bonding distance of 4.453 (9) and 4.419 (10) Å. The benzene-1,2-dicarboxylate anions bridge the La^{III} cations, forming a two-dimensional polymeric complex.

There are extensive intermolecular O—H···O and weak C—H···O hydrogen bonds, which cause the stability of the crystal structure (Fig. 2, Table 2). There are no π - π stacking interactions in the title compound. Furthermore, there is C—H··· π interaction between C—H group of the BDC ligand, with an C—H···centroid distance of 3.902 (9) Å [C19—H19···Cg1^v(C2—C7)] (Symmetry code:-1-*X*, -Y, 1-*Z*).

Experimental

LaCl_{3.6H₂O (0.0868 g, 0.20 mmol), benzene-1,2-dicarboxylic acid (0.0348 g, 0.20 mmol) and 1,2-bis(4-pyridyl)ethane were mixed in 10 ml of deionized water. After stirring for 30 min, the mixture was placed in a 23 ml Teflon-lined reactor, heated at 453 K for 48 h, then cooled slowly to room temperature. The colorless transparent single crystals of the title compound were obtained in 36.76% yield (based on La).}

Refinement

The site occupancy factor of the lattice water O27 was refined to 0.46 (3), and was set as 0.5 at the final cycles of refinement. Water H atoms were placed in calculated positions and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically with C—H = 0.93 Å and refined using a riding model with $U_{iso}(H) = 1.2U_{eq}(C)$. **Figures**

Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity. Symmetry codes:(i) -*x*, -*y*, -*z* + 1; (ii) -*x*, -*y* + 1, -*z* + 1; (iii) -*x* + 1, -*y* + 1, -*z* + 1; (iv) *x* - 1, *y*, *z*; (v) -*x* - 1, -*y*, -*z* + 1.

Fig. 2. The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Poly[[aquatris(µ4-benzene-1,2-dicarboxylato)dilanthanum(III)] hemihydrate]

Crystal data

$[La_2(C_8H_4O_4)_3(H_2O)] \cdot 0.5H_2O$	Z = 1
$M_r = 1594.36$	F(000) = 762
Triclinic, PT	$D_{\rm x} = 2.179 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.6269 (19) Å	Cell parameters from 4145 reflections
b = 10.5832 (17) Å	$\theta = 2.0 - 25.0^{\circ}$
c = 14.323 (2) Å	$\mu = 3.54 \text{ mm}^{-1}$
$\alpha = 97.271 \ (18)^{\circ}$	T = 150 K
$\beta = 102.199 \ (6)^{\circ}$	Prism, colorless
$\gamma = 104.489 \ (8)^{\circ}$	$0.47 \times 0.24 \times 0.04 \ mm$
$V = 1215.1 (4) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	4145 independent reflections
Radiation source: fine-focus sealed tube	3430 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
$\omega/2\theta$ scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997)	$k = -12 \rightarrow 12$
$T_{\min} = 0.287, \ T_{\max} = 0.871$	$l = -17 \rightarrow 16$
8765 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.087$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0369P)^{2} + 2.5018P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4145 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
356 parameters	$\Delta \rho_{max} = 1.25 \text{ e} \text{ Å}^{-3}$
12 restraints	$\Delta \rho_{min} = -0.91 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
La1	0.16724 (4)	0.22260 (3)	0.50902 (3)	0.0255 (1)	
La2	-0.30351 (4)	0.34775 (3)	0.49673 (3)	0.0181 (1)	
O1	-0.0850 (4)	0.2911 (4)	0.4193 (3)	0.0186 (13)	
O2	0.0101 (5)	0.1690 (4)	0.3225 (4)	0.0377 (16)	
O3	0.3563 (6)	0.2580 (6)	0.6913 (4)	0.048 (2)	
O4	0.4799 (5)	0.3465 (4)	0.5867 (3)	0.0239 (14)	
O5	0.7181 (5)	0.5887 (4)	0.5813 (3)	0.0214 (14)	
O6	0.5239 (5)	0.6448 (4)	0.6419 (3)	0.0233 (14)	
O7	-0.3449 (6)	-0.1149 (4)	0.5627 (4)	0.0351 (18)	
O8	-0.5707 (5)	-0.1219 (4)	0.6165 (4)	0.0312 (16)	
O17	-0.1888 (5)	0.5423 (4)	0.4122 (3)	0.0208 (14)	
O18	0.0471 (5)	0.5575 (4)	0.3684 (3)	0.0217 (14)	
O19	-0.2597 (5)	0.1804 (4)	0.5913 (4)	0.0313 (16)	
O20	0.0031 (5)	0.1774 (4)	0.6299 (4)	0.0369 (16)	
O22	0.1603 (6)	-0.0025 (4)	0.5669 (4)	0.0436 (18)	
C1	-0.0786 (7)	0.2446 (6)	0.3327 (6)	0.029 (2)	
C2	-0.1747 (7)	0.2850 (7)	0.2501 (5)	0.032 (2)	
C3	-0.2494 (9)	0.1966 (9)	0.1623 (6)	0.050 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C4	-0.3483 (10)	0.2326 (12	3) 0.087	77 (6)	0.071 (4)	
C5	-0.3728 (10)	0.3569 (11	3) 0.100	03 (6)	0.067 (4)	
C6	-0.2982 (8)	0.4457 (9)	0.185	59 (5)	0.040 (3)	
C7	-0.1968 (7)	0.4135 (7)	0.261	8 (5)	0.028 (2)	
C8	-0.1036 (7)	0.5116 (6)	0.353	39 (5)	0.0192 (19)	
C9	0.4775 (8)	0.3355 (7)) 0.674	18 (6)	0.033 (2)	
C10	0.6412 (7)	0.5955 (6)	0.647	77 (5)	0.0205 (19)	
C11	0.6971 (8)	0.5475 (8)	0.739	97 (5)	0.032 (2)	
C12	0.6165 (8)	0.4227 (8)) 0.753	30 (5)	0.037 (3)	
C13	0.6653 (10)	0.3832 (12	2) 0.841	2 (7)	0.069 (4)	
C14	0.7926 (11)	0.4676 (10	6) 0.915	53 (7)	0.091 (6)	
C15	0.8710 (11)	0.5890 (14	4) 0.901	2 (7)	0.079 (5)	
C16	0.8232 (9)	0.6330 (9)) 0.815	53 (6)	0.046 (3)	
C17	-0.4155 (8)	-0.0836 (6) 0.627	70 (5)	0.0254 (19)	
C18	-0.3075 (7)	-0.0081 (6) 0.722	29 (5)	0.027 (2)	
C19	-0.3358 (9)	-0.0561 (7) 0.805	52 (6)	0.040 (3)	
C20	-0.2256 (10)	-0.0039 (9) 0.893	33 (7)	0.059 (3)	
C21	-0.0847 (11)	0.1003 (10	0) 0.902	26 (7)	0.070 (4)	
C22	-0.0567 (9)	0.1496 (8)	0.821	6 (7)	0.055 (3)	
C23	-0.1669 (7)	0.0972 (6)	0.731	7 (6)	0.033 (2)	
C24	-0.1373 (7)	0.1562 (6)) 0.644	41 (6)	0.028 (2)	
027	0.717 (3)	0.922 (2)	0.195	59 (16)	0.163 (9)*	0.500
Н3	-0.23260	0.11290	0.154	100	0.0600*	
H4	-0.39840	0.17330	0.028	390	0.0860*	
Н5	-0.44080	0.38060	0.050)10	0.0810*	
H6	-0.31620	0.52910	0.193	300	0.0480*	
H13	0.61180	0.29940	0.850)10	0.0830*	
H14	0.82430	0.44130	0.974	120	0.1090*	
H15	0.95910	0.64440	0.950)50	0.0940*	
H16	0.87490	0.71840	0.808	330	0.0550*	
H19	-0.43070	-0.12450	0.800)30	0.0480*	
H20	-0.24470	-0.03830	0.947	780	0.0710*	
H21	-0.01040	0.13620	0.963	300	0.0840*	
H22	0.03760	0.21900	0.827	730	0.0660*	
H22A	0.17560	-0.07490	0.589	980	0.0650*	
H22B	0.10320	-0.04070	0.507	710	0.0650*	
H27A	0.82020	0.96320	0.234	430	0.2440*	0.500
H27B	0.67000	0.87010	0.231	30	0.2440*	0.500
14i- <u>1</u> :1		(82)				
	ement purumeters	(1)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.0128 (2)	0.0071 (2)	0.0613 (3)	0.0054 (1)	0.0149 (2)	0.0089 (2)
La2	0.0126 (2)	0.0076 (2)	0.0386 (3)	0.0058 (1)	0.0113 (2)	0.0063 (2)
01	0.0111 (19)	0.0089 (19)	0.036 (3)	0.0011 (16)	0.0098 (18)	0.0016 (19)
O2	0.021 (2)	0.024 (2)	0.062 (4)	0.009 (2)	0.008 (2)	-0.015 (2)
O3	0.022 (3)	0.069 (4)	0.069 (4)	0.013 (3)	0.020 (3)	0.053 (3)
O4	0.017 (2)	0.022 (2)	0.042 (3)	0.0137 (18)	0.012 (2)	0.015 (2)

05	0.017 (2)	0.018 (2)	0.029 (3)	0.0066 (17)	0.0060 (19)	0.0004 (19)
06	0.017 (2)	0.014 (2)	0.042 (3)	0.0082 (18)	0.010 (2)	0.005 (2)
07	0.034 (3)	0.017 (2)	0.069 (4)	0.016 (2)	0.030 (3)	0.015 (2)
08	0.017 (2)	0.010 (2)	0.070 (4)	0.0035 (18)	0.020 (2)	0.005 (2)
O17	0.017 (2)	0.015 (2)	0.037 (3)	0.0098 (17)	0.0123 (19)	0.0093 (19)
O18	0.017 (2)	0.017 (2)	0.036 (3)	0.0084 (18)	0.0109 (19)	0.0081 (19)
019	0.014 (2)	0.016 (2)	0.066 (4)	0.0068 (18)	0.006 (2)	0.017 (2)
O20	0.019 (2)	0.022 (2)	0.080 (4)	0.0089 (19)	0.020 (2)	0.028 (3)
O22	0.039 (3)	0.017 (2)	0.092 (4)	0.018 (2)	0.033 (3)	0.024 (3)
C1	0.015 (3)	0.016 (3)	0.051 (5)	0.000 (3)	0.012 (3)	-0.010 (3)
C2	0.010 (3)	0.041 (4)	0.037 (5)	0.001 (3)	0.007 (3)	-0.012 (3)
C3	0.023 (4)	0.071 (6)	0.044 (5)	0.003 (4)	0.015 (4)	-0.023 (4)
C4	0.028 (5)	0.129 (10)	0.031 (6)	-0.007 (6)	0.013 (4)	-0.029 (6)
C5	0.026 (4)	0.151 (11)	0.020 (5)	0.013 (6)	0.010 (4)	0.015 (6)
C6	0.022 (4)	0.076 (6)	0.028 (5)	0.017 (4)	0.011 (3)	0.020 (4)
C7	0.015 (3)	0.046 (4)	0.025 (4)	0.012 (3)	0.009 (3)	0.002 (3)
C8	0.019 (3)	0.016 (3)	0.031 (4)	0.009 (3)	0.012 (3)	0.017 (3)
C9	0.018 (3)	0.040 (4)	0.056 (5)	0.020 (3)	0.015 (3)	0.031 (4)
C10	0.008 (3)	0.017 (3)	0.030 (4)	-0.003 (2)	0.003 (3)	-0.003 (3)
C11	0.017 (3)	0.063 (5)	0.026 (4)	0.023 (3)	0.011 (3)	0.008 (4)
C12	0.017 (3)	0.068 (5)	0.037 (5)	0.017 (4)	0.011 (3)	0.029 (4)
C13	0.031 (5)	0.133 (9)	0.067 (7)	0.033 (6)	0.025 (5)	0.060 (7)
C14	0.027 (5)	0.216 (15)	0.044 (6)	0.039 (7)	0.014 (5)	0.059 (8)
C15	0.024 (5)	0.178 (13)	0.033 (6)	0.041 (7)	-0.002 (4)	0.003 (7)
C16	0.023 (4)	0.083 (6)	0.036 (5)	0.026 (4)	0.007 (3)	0.002 (4)
C17	0.024 (3)	0.011 (3)	0.048 (4)	0.008 (2)	0.014 (3)	0.016 (3)
C18	0.017 (3)	0.019 (3)	0.052 (5)	0.008 (3)	0.015 (3)	0.014 (3)
C19	0.027 (4)	0.033 (4)	0.060 (6)	0.002 (3)	0.015 (4)	0.016 (4)
C20	0.047 (5)	0.061 (6)	0.069 (7)	0.005 (4)	0.012 (5)	0.036 (5)
C21	0.045 (5)	0.080 (7)	0.061 (7)	-0.016 (5)	-0.008 (5)	0.031 (6)
C22	0.025 (4)	0.053 (5)	0.076 (7)	-0.006 (4)	0.002 (4)	0.030 (5)
C23	0.016 (3)	0.027 (3)	0.060 (5)	0.010 (3)	0.008 (3)	0.022 (4)
C24	0.016 (3)	0.013 (3)	0.063 (5)	0.008 (3)	0.016 (3)	0.015 (3)

Geometric parameters (Å, °)

La1—O1	2.599 (4)	C2—C7	1.414 (10)
La1—O2	2.645 (5)	C3—C4	1.377 (13)
La1—O3	2.695 (6)	C4—C5	1.380 (18)
La1—O4	2.613 (4)	C5—C6	1.369 (12)
La1—O5 ⁱ	2.617 (4)	C6—C7	1.380 (10)
La1—O7 ⁱⁱ	2.439 (5)	С7—С8	1.501 (10)
La1—O17 ⁱⁱⁱ	2.543 (4)	C9—C12	1.470 (11)
La1—O20	2.478 (5)	C10-C11	1.500 (10)
La1—O22	2.611 (4)	C11—C16	1.392 (11)
La2—O1	2.535 (4)	C11—C12	1.387 (12)
La2—O4 ^{iv}	2.482 (4)	C12—C13	1.395 (13)
La2—O5 ^{iv}	2.625 (4)	C13—C14	1.381 (16)

La2—O6 ⁱⁱⁱ	2.466 (4)	C14—C15	1.36 (2)
La2—O8 ^v	2.549 (5)	C15—C16	1.388 (14)
La2—O17	2.608 (4)	C17—C18	1.484 (10)
La2—O18 ⁱⁱⁱ	2.495 (4)	C18—C19	1.385 (10)
La2—O19	2.417 (5)	C18—C23	1.397 (9)
01—C1	1.293 (9)	C19—C20	1.362 (13)
O2—C1	1.253 (8)	C20—C21	1.391 (14)
O3—C9	1.244 (9)	C21—C22	1.373 (14)
O4—C9	1.286 (9)	C22—C23	1.381 (12)
O5—C10	1.274 (8)	C23—C24	1.511 (11)
O6—C10	1.242 (8)	С3—Н3	0.9300
O7—C17	1.261 (9)	C4—H4	0.9300
O8—C17	1.268 (9)	С5—Н5	0.9300
O17—C8	1.286 (8)	С6—Н6	0.9300
O18—C8	1.230 (8)	С13—Н13	0.9300
O19—C24	1.265 (9)	C14—H14	0.9300
O20—C24	1.240 (8)	C15—H15	0.9300
O22—H22B	0.8800	С16—Н16	0.9300
O22—H22A	0.9000	С19—Н19	0.9300
O27—H27B	0.8800	C20—H20	0.9300
O27—H27A	0.9100	C21—H21	0.9300
C1—C2	1.470 (10)	C22—H22	0.9300
C2—C3	1.389 (11)		
01—La1—O2	49.50 (14)	La1 ⁱⁱⁱ —O17—C8	125.3 (4)
O1—La1—O3	138.66 (15)	La2 ⁱⁱⁱ —O18—C8	141.3 (4)
O1—La1—O4	134.61 (13)	La2—O19—C24	136.6 (4)
O1—La1—O20	83.93 (14)	La1—O20—C24	145.0 (5)
O1—La1—O22	126.61 (15)	La1—O22—H22B	86.00
O1—La1—O7 ⁱⁱ	127.83 (16)	H22A—O22—H22B	99.00
O1—La1—O17 ⁱⁱⁱ	71.11 (14)	La1—O22—H22A	171.00
O1—La1—O5 ⁱ	73.05 (13)	H27A—O27—H27B	104.00
O2—La1—O3	171.83 (16)	O1—C1—O2	119.2 (7)
O2—La1—O4	127.22 (14)	O1—C1—C2	118.0 (6)
O2—La1—O20	118.61 (16)	O2—C1—C2	122.8 (7)
O2—La1—O22	108.06 (15)	C3—C2—C7	119.8 (7)
O2—La1—O7 ⁱⁱ	78.77 (16)	C1—C2—C3	120.7 (7)
O2—La1—O17 ⁱⁱⁱ	111.42 (13)	C1—C2—C7	119.4 (6)
O2—La1—O5 ⁱ	68.20 (13)	C2—C3—C4	120.2 (9)
O3—La1—O4	48.67 (15)	C3—C4—C5	119.8 (9)
O3—La1—O20	66.90 (17)	C4—C5—C6	120.7 (9)
O3—La1—O22	67.90 (18)	C5—C6—C7	121.0 (9)
O3—La1—O7 ⁱⁱ	93.09 (18)	C2—C7—C6	118.4 (7)
O3—La1—O17 ⁱⁱⁱ	74.93 (16)	С2—С7—С8	119.1 (6)
O3—La1—O5 ⁱ	111.83 (16)	С6—С7—С8	122.4 (7)
O4—La1—O20	113.75 (15)	O17—C8—C7	116.9 (6)
O4—La1—O22	98.40 (15)	O18—C8—C7	118.5 (6)

O4—La1—O7 ⁱⁱ	68.65 (15)	O17—C8—O18	124.6 (6)
O4—La1—O17 ⁱⁱⁱ	71.98 (14)	O4—C9—C12	117.6 (6)
O4—La1—O5 ⁱ	67.52 (13)	O3—C9—O4	119.8 (7)
O20—La1—O22	65.81 (16)	O3—C9—C12	122.5 (7)
O7 ⁱⁱ —La1—O20	135.44 (15)	O6—C10—C11	117.4 (6)
O17 ⁱⁱⁱ —La1—O20	79.05 (14)	O5—C10—C11	119.5 (6)
O5 ⁱ —La1—O20	140.95 (14)	O5—C10—O6	123.1 (6)
O7 ⁱⁱ —La1—O22	69.81 (16)	C10-C11-C16	119.5 (7)
O17 ⁱⁱⁱ —La1—O22	136.23 (15)	C12—C11—C16	119.6 (7)
O5 ⁱ —La1—O22	152.50 (16)	C10-C11-C12	120.8 (6)
O7 ⁱⁱ —La1—O17 ⁱⁱⁱ	135.85 (15)	C9—C12—C11	119.4 (7)
O5 ⁱ —La1—O7 ⁱⁱ	82.87 (15)	C9—C12—C13	120.9 (8)
O5 ⁱ —La1—O17 ⁱⁱⁱ	63.96 (13)	C11—C12—C13	119.6 (8)
O1—La2—O17	71.82 (14)	C12—C13—C14	120.5 (11)
O1—La2—O19	84.69 (15)	C13—C14—C15	119.3 (10)
O1—La2—O4 ^{iv}	164.86 (14)	C14—C15—C16	121.8 (10)
O1—La2—O5 ^{iv}	123.63 (14)	C11—C16—C15	119.1 (9)
$O1$ —La2— $O8^{v}$	71.19 (14)	O7—C17—O8	123.7 (6)
O1—La2—O6 ⁱⁱⁱ	104.32 (14)	O8—C17—C18	119.0 (6)
O1—La2—O18 ⁱⁱⁱ	77.94 (14)	O7—C17—C18	117.1 (6)
O17—La2—O19	150.39 (15)	C17—C18—C23	122.3 (6)
O4 ^{iv} —La2—O17	123.32 (14)	C17—C18—C19	117.9 (6)
O5 ^{iv} —La2—O17	62.98 (13)	C19—C18—C23	119.2 (7)
O8 ^v —La2—O17	114.56 (15)	C18—C19—C20	120.5 (7)
O6 ⁱⁱⁱ —La2—O17	70.92 (14)	C19—C20—C21	120.7 (9)
O17—La2—O18 ⁱⁱⁱ	87.01 (14)	C20—C21—C22	119.3 (9)
O4 ^{iv} —La2—O19	80.80 (15)	C21—C22—C23	120.7 (8)
O5 ^{iv} —La2—O19	121.13 (15)	C18—C23—C22	119.6 (7)
O8 ^v —La2—O19	72.45 (17)	C18—C23—C24	120.4 (7)
O6 ⁱⁱⁱ —La2—O19	134.18 (15)	C22—C23—C24	119.9 (6)
O18 ⁱⁱⁱ —La2—O19	70.27 (15)	O19—C24—C23	116.4 (6)
O4 ^{iv} —La2—O5 ^{iv}	68.53 (14)	O20—C24—C23	118.2 (6)
O4 ^{iv} —La2—O8 ^v	100.10 (15)	O19—C24—O20	125.5 (7)
O4 ^{iv} —La2—O6 ⁱⁱⁱ	83.05 (14)	С2—С3—Н3	120.00
O4 ^{iv} —La2—O18 ⁱⁱⁱ	100.99 (14)	С4—С3—Н3	120.00
O5 ^{iv} —La2—O8 ^v	158.53 (14)	C5—C4—H4	120.00
O5 ^{iv} —La2—O6 ⁱⁱⁱ	91.38 (14)	C3—C4—H4	120.00
O5 ^{iv} —La2—O18 ⁱⁱⁱ	68.20 (14)	С4—С5—Н5	120.00
O6 ⁱⁱⁱ —La2—O8 ^v	68.66 (15)	С6—С5—Н5	120.00
O8 ^v —La2—O18 ⁱⁱⁱ	133.08 (15)	С7—С6—Н6	120.00
O6 ⁱⁱⁱ —La2—O18 ⁱⁱⁱ	155.34 (14)	С5—С6—Н6	119.00

1.1 01 1.2	124.05 (1()	012 012 1112	120.00
LaI—OI—La2	124.95 (16) 95 <i>A</i> (<i>A</i>)	C12—C13—H13	120.00
$L_{a1} = 01 = 01$	33.4(4)	C15-C14-H14	120.00
La1	94.3 (5)	C13—C14—H14	120.00
La1—O3—C9	93.6 (5)	C14—C15—H15	119.00
La1—O4—C9	96.4 (4)	C16—C15—H15	119.00
La1—O4—La2 ^{vi}	122.76 (16)	C15—C16—H16	120.00
La2 ^{vi} —O4—C9	132.0 (4)	C11—C16—H16	120.00
La2 ^{vi} —O5—C10	115.6 (4)	C18—C19—H19	120.00
La1 ⁱ —O5—C10	127.7 (4)	С20—С19—Н19	120.00
La1 ⁱ —O5—La2 ^{vi}	114.93 (16)	С21—С20—Н20	120.00
La2 ⁱⁱⁱ —O6—C10	132.6 (4)	С19—С20—Н20	120.00
Lal ⁱⁱ —O7—C17	156.2 (5)	C20—C21—H21	120.00
La2 ^v —O8—C17	110.5 (4)	C22—C21—H21	120.00
La2—O17—C8	112.8 (4)	C21—C22—H22	120.00
La1 ⁱⁱⁱ —O17—La2	118.14 (16)	C23—C22—H22	120.00
O2—La1—O1—La2	154.4 (3)	O5 ^{iv} —La2—O19—C24	-74.0 (7)
O2—La1—O1—C1	-7.1 (3)	O8 ^v —La2—O19—C24	124.4 (7)
O3—La1—O1—La2	-26.0 (3)	O6 ⁱⁱⁱ —La2—O19—C24	157.3 (6)
O3—La1—O1—C1	172.4 (4)	O18 ⁱⁱⁱ —La2—O19—C24	-26.6 (7)
O4—La1—O1—La2	-99.6 (2)	O17—La2—O4 ^{iv} —La1 ^{iv}	97.8 (2)
O4—La1—O1—C1	98.9 (4)	O17—La2—O4 ^{iv} —C9 ^{iv}	-122.9 (6)
O20—La1—O1—La2	18.1 (2)	O19—La2—O4 ^{iv} —La1 ^{iv}	-100.8 (2)
O20—La1—O1—C1	-143.5 (4)	O19—La2—O4 ^{iv} —C9 ^{iv}	38.4 (6)
O22—La1—O1—La2	71.7 (3)	O1—La2—O5 ^{iv} —C10 ^{iv}	-153.0 (4)
O22—La1—O1—C1	-89.8 (4)	O1—La2—O5 ^{iv} —La1 ⁱⁱⁱ	40.9 (2)
O7 ⁱⁱ —La1—O1—La2	163.59 (18)	O17—La2—O5 ^{iv} —C10 ^{iv}	166.4 (5)
O7 ⁱⁱ —La1—O1—C1	2.1 (4)	O17—La2—O5 ^{iv} —La1 ⁱⁱⁱ	0.34 (15)
O17 ⁱⁱⁱ —La1—O1—La2	-62.4 (2)	O19—La2—O5 ^{iv} —C10 ^{iv}	-47.3 (5)
O17 ⁱⁱⁱ —La1—O1—C1	136.0 (4)	O19—La2—O5 ^{iv} —La1 ⁱⁱⁱ	146.65 (17)
O5 ⁱ —La1—O1—La2	-130.1 (2)	O1—La2—O8 ^v —C17 ^v	-170.5 (5)
O5 ⁱ —La1—O1—C1	68.4 (4)	O17—La2—O8 ^v —C17 ^v	-111.7 (4)
O1—La1—O2—C1	7.3 (3)	O19—La2—O8 ^v —C17 ^v	99.3 (5)
O4—La1—O2—C1	-113.4 (4)	O1—La2—O6 ⁱⁱⁱ —C10 ⁱⁱⁱ	-162.0 (5)
O20—La1—O2—C1	58.7 (4)	O17—La2—O6 ⁱⁱⁱ —C10 ⁱⁱⁱ	-97.4 (5)
O22—La1—O2—C1	130.4 (4)	O19—La2—O6 ⁱⁱⁱ —C10 ⁱⁱⁱ	101.4 (6)
O7 ⁱⁱ —La1—O2—C1	-165.4 (4)	01—La2—018 ⁱⁱⁱ —C8 ⁱⁱⁱ	27.4 (6)
O17 ⁱⁱⁱ —La1—O2—C1	-30.3 (4)	O17—La2—O18 ⁱⁱⁱ —C8 ⁱⁱⁱ	-44.7 (6)
O5 ⁱ —La1—O2—C1	-78.6 (4)	O19-La2-O18 ⁱⁱⁱ -C8 ⁱⁱⁱ	116.0 (7)
O1—La1—O3—C9	-107.5 (5)	La1—O1—C1—O2	13.1 (6)
O4—La1—O3—C9	7.1 (4)	La1—O1—C1—C2	-166.0 (5)
O20—La1—O3—C9	-156.2 (5)	La2—O1—C1—O2	-144.9 (5)

O22—La1—O3—C9	131.7 (5)	La2—O1—C1—C2	36.0 (9)
O7 ⁱⁱ —La1—O3—C9	64.9 (5)	La1—O2—C1—O1	-12.9 (6)
O17 ⁱⁱⁱ —La1—O3—C9	-71.9 (5)	La1—O2—C1—C2	166.2 (6)
O5 ⁱ —La1—O3—C9	-18.6 (5)	La1—O3—C9—O4	-12.6 (7)
O1—La1—O4—C9	115.6 (4)	La1—O3—C9—C12	163.6 (6)
O1—La1—O4—La2 ^{vi}	-93.6 (2)	La1—O4—C9—O3	13.1 (7)
O2—La1—O4—C9	-177.8 (4)	La1—O4—C9—C12	-163.3 (6)
O2—La1—O4—La2 ^{vi}	-27.0 (3)	La2 ^{vi} —O4—C9—O3	-133.4 (6)
O3—La1—O4—C9	-6.9 (4)	La2 ^{vi} —O4—C9—C12	50.2 (9)
O3—La1—O4—La2 ^{vi}	143.9 (3)	La2 ^{vi} —O5—C10—O6	-116.6 (6)
O20—La1—O4—C9	9.8 (4)	La2 ^{vi} —O5—C10—C11	66.1 (7)
O20—La1—O4—La2 ^{vi}	160.59 (18)	La1 ⁱ —O5—C10—O6	47.4 (8)
O22—La1—O4—C9	-57.4 (4)	La1 ⁱ —O5—C10—C11	-129.9 (5)
O22—La1—O4—La2 ^{vi}	93.4 (2)	La2 ⁱⁱⁱ —O6—C10—O5	33.2 (9)
O7 ⁱⁱ —La1—O4—C9	-121.8 (4)	La2 ⁱⁱⁱ —O6—C10—C11	-149.4 (5)
O7 ⁱⁱ —La1—O4—La2 ^{vi}	29.00 (19)	La1 ⁱⁱ —O7—C17—O8	-113.2 (11)
O17 ⁱⁱⁱ —La1—O4—C9	78.6 (4)	La1 ⁱⁱ —O7—C17—C18	61.0 (13)
O17 ⁱⁱⁱ —La1—O4—La2 ^{vi}	-130.6 (2)	La2 ^v —O8—C17—O7	29.7 (8)
O5 ⁱ —La1—O4—C9	147.2 (4)	La2 ^v —O8—C17—C18	-144.4 (5)
O5 ⁱ —La1—O4—La2 ^{vi}	-62.00 (19)	La2—O17—C8—O18	-110.4 (6)
O1—La1—O20—C24	19.1 (7)	La2—O17—C8—C7	70.1 (6)
O2—La1—O20—C24	-17.6 (8)	La1 ⁱⁱⁱ —O17—C8—O18	47.3 (8)
O3—La1—O20—C24	169.2 (8)	La1 ⁱⁱⁱ —O17—C8—C7	-132.3 (5)
O4—La1—O20—C24	155.6 (7)	La2 ⁱⁱⁱ —O18—C8—O17	27.6 (11)
O22—La1—O20—C24	-115.7 (8)	La2 ⁱⁱⁱ —O18—C8—C7	-152.9 (5)
O7 ⁱⁱ —La1—O20—C24	-121.3 (7)	La2—O19—C24—O20	-34.9 (11)
O17 ⁱⁱⁱ —La1—O20—C24	91.0 (7)	La2—O19—C24—C23	144.8 (5)
O5 ⁱ —La1—O20—C24	72.5 (8)	La1-O20-C24-O19	-17.0 (12)
O1—La1—O7 ⁱⁱ —C17 ⁱⁱ	26.2 (12)	La1-020-C24-C23	163.3 (5)
O2—La1—O7 ⁱⁱ —C17 ⁱⁱ	33.3 (11)	O1—C1—C2—C3	-144.4 (7)
O3—La1—O7 ⁱⁱ —C17 ⁱⁱ	-147.4 (11)	O1—C1—C2—C7	33.0 (9)
O4—La1—O7 ⁱⁱ —C17 ⁱⁱ	-104.4 (11)	O2—C1—C2—C3	36.6 (10)
O20—La1—O7 ⁱⁱ —C17 ⁱⁱ	152.9 (10)	O2—C1—C2—C7	-146.1 (7)
O22—La1—O7 ⁱⁱ —C17 ⁱⁱ	147.5 (11)	C1—C2—C3—C4	175.6 (8)
O1—La1—O17 ⁱⁱⁱ —La2 ⁱⁱⁱ	-80.23 (19)	C7—C2—C3—C4	-1.7 (12)
O1—La1—O17 ⁱⁱⁱ —C8 ⁱⁱⁱ	76.4 (5)	C1—C2—C7—C6	-174.9 (6)
O2—La1—O17 ⁱⁱⁱ —La2 ⁱⁱⁱ	-50.9 (2)	C1—C2—C7—C8	7.9 (9)
O2-La1-O17 ⁱⁱⁱ -C8 ⁱⁱⁱ	105.7 (5)	C3—C2—C7—C6	2.4 (10)
O3—La1—O17 ⁱⁱⁱ —La2 ⁱⁱⁱ	123.7 (2)	C3—C2—C7—C8	-174.8 (7)
O3—La1—O17 ⁱⁱⁱ —C8 ⁱⁱⁱ	-79.7 (5)	C2—C3—C4—C5	0.1 (14)
O4—La1—O17 ⁱⁱⁱ —La2 ⁱⁱⁱ	72.88 (19)	C3—C4—C5—C6	0.8 (15)

O4—La1—O17 ⁱⁱⁱ —C8 ⁱⁱⁱ	-130.5 (5)	C4—C5—C6—C7	-0.1 (14)
O20—La1—O17 ⁱⁱⁱ —La2 ⁱⁱⁱ	-167.5 (2)	C5—C6—C7—C2	-1.5 (11)
O20—La1—O17 ⁱⁱⁱ —C8 ⁱⁱⁱ	-10.9 (5)	C5—C6—C7—C8	175.6 (8)
O22—La1—O17 ⁱⁱⁱ —La2 ⁱⁱⁱ	156.13 (19)	C2—C7—C8—O17	-110.5 (7)
O22—La1—O17 ⁱⁱⁱ —C8 ⁱⁱⁱ	-47.3 (6)	C2—C7—C8—O18	69.9 (8)
O1—La1—O5 ⁱ —La2 ⁱⁱⁱ	77.17 (18)	C6—C7—C8—O17	72.4 (9)
O1—La1—O5 ⁱ —C10 ⁱ	-118.7 (5)	C6—C7—C8—O18	-107.2 (8)
O2—La1—O5 ⁱ —La2 ⁱⁱⁱ	129.6 (2)	O3—C9—C12—C11	-145.8 (8)
$O2-La1-O5^{i}-C10^{i}$	-66.3 (5)	O3—C9—C12—C13	32.4 (12)
O3—La1—O5 ⁱ —La2 ⁱⁱⁱ	-59.2 (2)	O4—C9—C12—C11	30.5 (10)
$O3-La1-O5^{i}-C10^{i}$	104.9 (5)	O4—C9—C12—C13	-151.3 (8)
O4—La1—O5 ⁱ —La2 ⁱⁱⁱ	-79.85 (18)	O5-C10-C11-C12	-99.6 (8)
$O4-La1-O5^{i}-C10^{i}$	84.3 (5)	O5—C10—C11—C16	85.3 (9)
O20—La1—O5 ⁱ —La2 ⁱⁱⁱ	20.6 (3)	O6—C10—C11—C12	82.9 (9)
O20—La1—O5 ⁱ —C10 ⁱ	-175.3 (5)	O6—C10—C11—C16	-92.3 (8)
$O22$ —La1— $O5^{i}$ —La2 ⁱⁱⁱ	-143.0 (3)	C10—C11—C12—C9	1.6 (11)
O22—La1—O5 ⁱ —C10 ⁱ	21.1 (7)	C10-C11-C12-C13	-176.6 (7)
O17—La2—O1—La1	127.4 (2)	C16—C11—C12—C9	176.8 (7)
O17—La2—O1—C1	-79.6 (6)	C16-C11-C12-C13	-1.5 (12)
O19—La2—O1—La1	-34.3 (2)	C10-C11-C16-C15	178.2 (8)
O19—La2—O1—C1	118.7 (6)	C12-C11-C16-C15	3.0 (12)
O5 ^{iv} —La2—O1—La1	89.9 (2)	C9—C12—C13—C14	-177.9 (9)
O5 ^{iv} —La2—O1—C1	-117.2 (5)	C11—C12—C13—C14	0.3 (13)
O8 ^v —La2—O1—La1	-107.6 (2)	C12—C13—C14—C15	-0.6 (16)
O8 ^v —La2—O1—C1	45.4 (5)	C13—C14—C15—C16	2.3 (16)
O6 ⁱⁱⁱ —La2—O1—La1	-168.64 (18)	C14—C15—C16—C11	-3.4 (15)
O6 ⁱⁱⁱ —La2—O1—C1	-15.7 (6)	O7—C17—C18—C19	-128.0 (7)
O18 ⁱⁱⁱ —La2—O1—La1	36.59 (19)	O7—C17—C18—C23	43.1 (9)
O18 ⁱⁱⁱ —La2—O1—C1	-170.4 (6)	O8—C17—C18—C19	46.5 (9)
O1—La2—O17—C8	13.8 (4)	O8—C17—C18—C23	-142.4 (6)
O1—La2—O17—La1 ⁱⁱⁱ	-145.6 (2)	C17—C18—C19—C20	169.6 (7)
O19—La2—O17—C8	53.0 (5)	C23-C18-C19-C20	-1.8 (11)
O19—La2—O17—La1 ⁱⁱⁱ	-106.4 (3)	C17—C18—C23—C22	-169.5 (7)
O4 ^{iv} —La2—O17—C8	-166.7 (4)	C17—C18—C23—C24	12.1 (10)
O4 ^{iv} —La2—O17—La1 ⁱⁱⁱ	33.9 (2)	C19—C18—C23—C22	1.5 (10)
O5 ^{iv} —La2—O17—C8	159.1 (5)	C19—C18—C23—C24	-176.9 (6)
O5 ^{iv} —La2—O17—La1 ⁱⁱⁱ	-0.36 (16)	C18—C19—C20—C21	1.4 (13)
O8 ^v —La2—O17—C8	-44.7 (4)	C19—C20—C21—C22	-0.6 (14)
O8 ^v —La2—O17—La1 ⁱⁱⁱ	155.92 (17)	C20—C21—C22—C23	0.2 (14)
O6 ⁱⁱⁱ —La2—O17—C8	-99.1 (4)	C21—C22—C23—C18	-0.7 (12)
O6 ⁱⁱⁱ —La2—O17—La1 ⁱⁱⁱ	101.5 (2)	C21—C22—C23—C24	177.7 (8)
O18 ⁱⁱⁱ —La2—O17—C8	92.1 (4)	C18—C23—C24—O19	46.1 (9)

O18 ⁱⁱⁱ —La2—O17—La1 ⁱⁱⁱ	-67.35 (19)	C18—C23—C24—O20	-134.2 (7)
O1—La2—O19—C24	52.5 (7)	C22—C23—C24—O19	-132.3 (7)
O17—La2—O19—C24	15.4 (9)	C22—C23—C24—O20	47.4 (10)
O4 ^{iv} —La2—O19—C24	-131.9 (7)		
Symmetry codes: (i) – <i>x</i> +1, – <i>y</i> +1, – <i>z</i> +1;	(ii) $-x, -y, -z+1$; (iii) $-x, -z+1$;	<i>y</i> +1, - <i>z</i> +1; (iv) <i>x</i> -1, <i>y</i> , <i>z</i> ; (v) - <i>x</i> -1, - <i>y</i> , -	z+1; (vi) x+1, y, z.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O22—H22A···O1 ⁱⁱ	0.90	2.20	3.001 (6)	148.
O22—H22B···O20 ⁱⁱ	0.88	2.15	3.009 (8)	164.
O27—H27A···O2 ^{vii}	0.91	2.38	3.17 (2)	146.00
O27—H27B···O3 ⁱ	0.88	1.86	2.69 (2)	158.00
C3—H3···O27 ^{viii}	0.93	2.15	2.96 (2)	145.
C16—H16····O2 ⁱ	0.93	2.58	3.331 (10)	138.
C19—H19…Cg ^v	0.93	2.98	3.902 (9)	169.
Symmetry codes: (ii) $-x$, $-y$, $-z+1$; (vii) $x+1$,	<i>y</i> +1, <i>z</i> ; (i) - <i>x</i> +1, - <i>y</i> +1	, -z+1; (viii) x-1, y-	-1, z; (v) -x - 1, -y, -z +	1.

